ПРОГНОЗНА ОЦІНКА ЗСУВОНЕБЕЗПЕКИ У PEГIOHAX УKРАЇНИ ТА НА АОКААБНИХ ТЕРИТОРIЯХ ЯРУЖKНО-БАМОЧНОЇ МЕРЕХI

Ковров О.С., Колесник В.Є.
ДВНЗ «Національний гірничий університет» пр. Д. Яворницького, 19, 49005, м. Дніпро
kovralex1@gmail.com
kolesnikve@yahoo.com

Стаття присвячена дослідженню факторів, що впливають на поширення зсувів. Досліджено залежність між кількістю атмосферних опадів та чисельністю зсувів, яка дозволяє прогнозувати зсувонебезпеки по регіонах України. Обгрунтовано кліматичну модель зсувонебезпеки для яружно-балочної мережі, яка дозволяє обчислювати кількість атмосферних опадів для виникнення одиничного зсуву. Запропоновано інтегральний коефіцієнт рельєфу Крs, який характеризує зсувонебезпеку конкретної балки. Ключові слова: екзогенні геологічні процеси, зсув, кліматичні фактори, зсувонебезпека.

Abstract

Прогнозная оценка оползней в регионах Украины и на локальных территориях овражно-балочной сети. Ковров А.С., Колесник В.Е. Статья посвящена исследованию факторов, влияющих на распространение оползней. Исследована зависимость между количеством атмосферных осадков и численностью оползней, которая позволяет прогнозировать оползнеопасность по регионам Украины. Обоснована климатическая модель оползнеопасности для овражно-балочной сети, что позволяет вычислять количество атмосферных осадков для возникновения одиночного оползня. Предложен интегральный коэффициент рельефа Крs, характеризующий оползнеопасность конкретной балки. Ключевые слова: экзогенные геологические процессы, оползень, климатические факторы, оползнеопасность.

Forecast assessment of landslides in the regions of Ukraine and on the local areas of ravine and gully chain. Kovrov O., Kolesnyk V. The paper deals with the study of factors affecting the propagation of landslides. The dependence between the amount of atmospheric precipitation and the number of landslides has been investigated, which allows predict landslide hazard in the regions of Ukraine. The climatic model of landslide hazard for a ravine network, which allows calculate the amount of atmospheric precipitation for the occurrence of a single landslide, is substantiated. The integral relief coefficient Kps , which characterizes the landslide hazard of a particular ravine, is proposed. Key words: exogenous geological processes, landslide, climatic factors, landslide hazard.

Постановка проблеми. Кліматичні зміни та порушення складових навколишнього природного середовища постають як важливі компоненти соці-ально-екологічної проблеми. Так, в Україні середня температура за останні 25 років зросла на $1,3^{\circ} \mathrm{C}$ та $0,9^{\circ} \mathrm{C}$ у літній та зимовий сезони, відповідно. Підвищення температури повітря сприяє зменшенню промерзання грунту взимку, прискоренню просочування води у грунтову товщу та підвищення рівня грунтових вод, посилення підтоплення та активізація зсувів, у тому числі і на територіях населених міст [1]. Слід зазначити, що середньорічна кількість атмосферних опадів в Україні, попри кліматичні зміни, суттєво не змінилася, але спостерігається їх перерозподіл за місяцями, причому суттєвого зменшення середньомісячної кількості опадів зазнали квітень (-35%), липень (-32%), серпень (-32%), а аномального збільшення - грудень (-72%), січень $(+38 \%)$, березень ($+105 \%$) і вересень ($+102 \%$). Однак, найбільш помітним наслідком зміни клімату в Україні є не стільки поступове потепління, скільки зростання кількості та інтенсивності екстремальних погодних явищ, викликаних динамічними проце-

сами у кліматичних системах: смерчі, шторми, урагани, засухи, повені, температурні рекорди тощо, які супроводжуються, хоч і короткочасними, але інтенсивними опадами - провісниками геологічних процесів у вигляді зсувів земної поверхні.

Найбільш ймовірними наслідками глобального потепління на найближчу перспективу для України стануть: підвищення середньорічної температури, збільшення кількості атмосферних опадів на 20\%, підвищення рівня Чорного і Азовського морів та, як наслідок, збільшення кількості екзогенних геологічних процесів та зсувів [2].

Актуальність дослідження. Поширення та розвиток зсувів земної поверхні на території України має тенденцію до зростання, зокрема площі зсувонебезпечних зон за останні 30 років збільшились у 2-5 разів. Площа фактичних зсувів становить 4953,6 км²2. У районах активної господарської діяльності (Прикарпаття, Крим, Донбас, Одеська, Дніпропетровська, Хмельницька та інші промислові агломерації) зареєстровано 140 тис. зсувів. Головними природними чинниками активізації зсувів є кліматичні зміни обумовлені кількістю та

інтенсивністю опадів, температурними коливаннями тощо. Господарська діяльність виступає фактором додаткового впливу на розвиток зсувного процесу у вигляді зовнішніх навантажень, підрізки схилів під час будівельних робіт, створення динамічних навантажень тощо.

Адекватна прогнозна оцінка зсувонебезпеки у масштабах цілих регіонів і окремих яружно-балочних мереж дозволить запобігти катастрофічним зсувним явищам та впровадити дієву систему захисних інженерних заходів.

Зв’язок авторського доробку із важливими науковими та практичними завданнями. Авторами досліджено залежність між кількістю атмосферних опадів та чисельністю зсувів, яка дозволяє прогнозувати зсувонебезпеку по окремим регіонам України. Для яружно-балочної мережі запропоновано методику обчислення параметрів впливових чинників, що є критичними для виникнення одиничного зсуву. Такий авторський доробок є достатньо вагомим для прогнозування та попередження екзогенних геологічних процесів і сприятиме вирішенню практичних завдань, пов’язаних зі зсувами земної поверхні як на регіональному, так і локальному рівнях.

Аналіз останніх досліджень i публікацій. Дослідження природних умов регіонів України, включаючи території яружно-балочних мереж, прогнозування змін інженерно-геологічних умов під впливом природно-техногенних чинників, виявлення змін стану та запобігання негативним наслідкам зсувів земної поверхні є основою моніторингу земель та геологічного середовища [3, 4].

У роботі [5] виконано геомоніторинг земель та геологічного середовища у балці Діївська (Безп'ята, Кринична), м. Дніпро, що знаходиться вздовж житлового масиву Діївка у західній частині Новокодакського району м. Дніпро. Наразі вся територія балки являє собою техноекологічну небезпеку через масштабні зсувні явища, які загрожують знищенням приватним будинкам та дачним ділянкам. Крім того, на зону геологічних зрушень земної поверхні припадає ділянка залізниці державного значення у районі станції 178 км у районі вул. Геологічної. У геоморфологічному відношенні досліджувана територія розташована у межах вододільного плато правого берега р. Дніпро. Формування балки проходило внаслідок діяльності тривалих екзогенних процесів неоген-четвертинного віку під впливом клімату, як чинника формування рельєфу. Загальна довжина балки сягає приблизно 3000 м. Балка має субмеридіальний напрямок з півдня на північ, звивисту форму, впадає у долину p. Дніпро, характеризується широкою розгалуженістю, різною крутизною схилів. Загальна глибина урізу балки змінюється від 15 м до 40 м. Верхів’я деяких із них ускладнені яружною мережею, глибина врізання від 3 м до 8 m , ширина від 1 м до 25 м, кут ухилу укосів $30-60^{\circ}$. Довжина ярів від 30 м до 100 м. Ширина відрогів по бровці змінюється у

межах 200-400 м, глибина врізання - до 25 м, довжина - від 300 м до 550 м.

На цей час балка є зсувонебезпечною через низьку стійкість (міцність) лесових грунтів, кліматичні особливості місцевості та штучні впливи. Вздовж усієї балки та її відрогів спостерігаються геоморфологічні порушення у вигляді зсувів, поверхневої ерозії та вимоїн. Крім того, зменшується кількість дернового покриву схилів, дно балки засипається відходами металургійного виробництва, а схили - побутовим i будівельним сміттям. Профіль балки змінюється внаслідок підрізки схилів, будівництва гаражів, вібраційних впливів від залізничних доріг та автомагістралей, підтоплення внаслідок підйому рівня підземних вод. Загальна площа зсувних ділянок у балці Діївська може сягати приблизно 45000 м².

Мета статті полягає в оцінці зсувонебезпеки у регіонах України та на локальних територіях яруж-но-балочної мережі населених міст на прикладі балки Діївська, розташованій в одному з житлових масивів м. Дніпро.

Викладення основного матеріалу. Для досягнення поставленої мети, враховуючи важливість зазначеної проблеми, авторами попередньо досліджувалася закономірність впливу кліматичних та геоморфологічних факторів на розвиток зсувів в регіонах України [6]. В результаті, на основі обробки статистичних даних стосовно кліматичних показників та рельєфу територій, побудовано модель залежності питомої кількості зсувів грунту (число зсувів на 1000 кв. км) від інтенсивності атмосферних опадів у регіонах. При цьому для оцінки зсувонебезпечності певних областей запропоновано інтегральний коефіцієнт рельєфу, який є добутком усереднених відомих коефіцієнтів висоти, густоти та глибини рельєфу. Поле кореляції питомої кількості зсувів, нормованих за інтегральним коефіцієнтом рельєфу, від опадів по регіонах України представлено на рис. 1 .

Для подальшого аналізу наведемо виявлений тренд з предметними змінними у вигляді рівняння регресії:

$$
\begin{equation*}
N_{s c}=0,011 K_{p} W, \tag{1}
\end{equation*}
$$

де: $N_{з с}$ - питома чисельність зсувів у регіоні, число зсувів на 1000 кв. км; W - кількість річних опадів, мм/рік; K_{p} - інтегральний коефіцієнт рельєфу місцевості у певному регіоні.

Зазначимо, що виявлена лінійна регресійна залежність питомої чисельності зсувів від кількості атмосферних опадів у вигляді (1) дозволила визначати потенційну зсувонебезпечність певних регіонів (табл. 1) та побудувати відповідну карту України [6].

Як бачимо, маючи середні значення річних опадів у регіоні можна визначити очікувану кількість зсувів, що приходиться на 1000 км² території, яка характеризується певним регіональним коефіцієнтом рельєфу місцевості (Кр). Проте на практиці, зокрема у локальному контексті, тобто на певних територіях

яружно-балочної мережі населених міст, постає зворотна задача, що полягає у визначенні кількості опадів, яка спричинить, хоча б один зсув грунту на певній території, наприклад, житлового масиву, розташованого поряд з яром чи балкою, небезпечна зона якої складає певну площу $-S$. Очевидно, що на цій

території інтегральний коефіцієнт рельєфу місцевості буде відрізнятися від регіонального (Кр), а, отже, також потребує окремого визначення.

Для вирішення задачі у такій постановці перепишемо рівняння (1) з заміною питомої кількості зсувів на фактичну та помножимо ліву і праву частину на

Рис. 1. Поле кореляиії питомої кількості зсувів від опадів по регіонам України, де суиільна лінія (тренд) -лінійна регресійна залежність ииих показників [6]

Прогнозна кількість зсувів Nзс на 1000 кв. км для зсувонебезпечних областей України

Назва адміністративної області	Інтегральний коефіцієнт впливу рельєфу, \boldsymbol{K}_{p}	Усереднені значення загальноїкількості опадів $\boldsymbol{W}, \mathbf{\text { мм }} \mathbf{\text { piк }}$	Прогнозна кількість зсувів на 1000 кв. км $\boldsymbol{N}_{\mathbf{3}}$, шт
АР Крим	6,26	753,8	519
Вінницька	6,62	673,8	491
Дніпропетровська	4,13	558,5	254
Донецька	5,02	538,5	297
Закарпатська	9,28	1301,3	1328
Івано-Франківська	9,75	1032,3	1107
Київська	4,15	609,3	278
Луганська	5,61	494,5	305
Львівська	8,19	840,3	757
Миколаївська	3,87	613,5	261
Одеська	4,19	600,3	277
Полтавська	3,77	595,3	247
Сумська	4,43	568,0	277
Харківська	4,4	521,5	252
Хмельницька	6,8	661,0	494
Черкаська	4,98	610,0	334
Чернівецька	10,84	713,3	850

S. Отримаємо:

$$
\begin{equation*}
N_{3 c} S / 1000=0,011 K_{p} W S \tag{2}
\end{equation*}
$$

Ліва частина рівняння (2) прогнозує фактично очікувану чисельність зсувів на території площиною S, км ${ }^{2}$ після певної кількості опадів. Позначимо її як N_{s}, тобто $N_{3 c} S / 1000=N_{s}$, та перепишемо рівняння (2) у вигляді

$$
\begin{equation*}
N_{s}=0,011 K_{p s} W_{s} S \tag{3}
\end{equation*}
$$

де W_{s} - фактична кількість опадів над обраною територією на період прогнозу, мм; $K_{p s}$ - інтегральний коефіцієнт рельєфу обраної місцевості.

Рівняння (3) дозволяє визначити кількість опадів, що спричинить хоча б один зсув грунту на обраній теритоpiï. Для цього підставимо у ліву частину (3) величину N_{s} $=1$, та знайдемо корінь отриманого рівняння у вигляді:

$$
\begin{equation*}
W_{s o}=1 / 0,011 K_{p s} S=99,9 / K_{p s} S . \tag{4}
\end{equation*}
$$

Не буде великою помилкою після округлення переписати остаточно розрахункову формулу (4) у вигляді:
a) загальний план балки (ст. 178 км)

в) зсувна ділянка поблизу приватної забудови

$$
\begin{equation*}
W_{s o}=100 / K_{p s} S, \text { мм. } \tag{5}
\end{equation*}
$$

3 формули (5) витікає, що чим більше масштаби яружно-балочної мережі, тим менша кількість опадів спричинить принаймні одиничний зсув. Але $W_{s o}$ певною мірою залежить й від величини інтегрального показника $K_{p s}$, який враховує рельєф відповідної ділянки яружно-балочної мережі.

Таким чином, для прогнозу кількості опадів, що спричинять один зсув грунту на певній території яружно-балочної мережі площею S, км², залишається визначити інтегральний коефіцієнт рельєфу цієї території $K_{p s}$.

Для визначення інтегрального коефіцієнта рельєфу $K_{p s}$ балки Діївська розглянемо її геоморфологію, що обумовлена спільною дією природних та техногенних чинників. Так, варіації кількості опадів по сезонам зумовлюють інтенсивні процеси ерозії та збільшують площі зсувних ділянок вздовж балки, спричиняючи небезпеку для домогосподарств смт. Діївка (рис. 2).
б) глибоке урочище

г) тріщина-закол нового зсуву

Рис. 2. Зсувонебезпечні ділянки балки Дївська

Авторами запропоновано обчислювати указаний коефіцієнт, враховуючи геоморфологічні та кліматичні чинники, які можуть спричинити принаймні один зсув на певній ділянці обраної яружно-балочної мережі. Оскільки, як зазначено вище, інтегральний коефіцієнт рельєфу є добутком інтегральних показників, які характеризують зміни у рельєфі, тому для конкретної яружно-балочної мережі чи системи обчислимо $K_{p s}$ також як добуток перепаду ï̈ абсолютних висот $K_{\text {suc }}$, коефіцієнту найбільш зсувонебезпечного укосу $K_{\text {зсу/ }}$ та коефіцієнту перетину найбільш зсувонебезпечного профілю $K_{n e p}$:

$$
\begin{equation*}
K_{p s}=K_{\text {suс }} \cdot K_{\text {sсув }} \cdot K_{n e p} \cdot \tag{6}
\end{equation*}
$$

Коефіцієнт перепаду абсолютних висот вздовж яружно-балочної системи $K_{\text {вис }}$ визначається у промілях за формулою:

$$
\begin{equation*}
\mathrm{K}_{\text {вис }}=1000 \cdot \Delta \mathrm{~h} / \mathrm{L}_{\text {заг }} \tag{7}
\end{equation*}
$$

де $L_{\text {заг }}$ - загальна довжина балки, м; $\Delta \mathrm{h}$ - перепад висот вздовж балки, м; 1000 - перерахунковий коефіцієнт, проміле. Діапазон значень $K_{\text {вис }}=5 \ldots 30$.

Коефіцієнт найбільш зсувонебезпечного укосу $K_{\text {зсу }}$ визначається за результатами візуальних спостережень або геодезичного моніторингу та визначається як відношення абсолютної висоти h_{s} до довжини укосу l_{s} (рис 3 , а) та $є$ тангенсом кута нахилу укосу:

$$
\begin{equation*}
K_{\text {scys }}=h_{s} / l_{s} . \tag{8}
\end{equation*}
$$

Рис. 3. Пояснювальні схеми до розрахунку коефійієнту найбільш зсувонебезпечного укосу $\kappa_{\text {зсуя }}$ (а) та коефіиієнту перетину $K_{\text {пер }}(б)$ яружно-балочної мережі чи системи

Теоретично, значення $K_{\text {зсу6 }}$ може приймати значення у діапазоні [0; ∞], але натурні спостереження геомоніторингу природних схилів свідчить, що максимальні кути нахилу укосів досягають $85 \ldots 87^{\circ}$. Тому діапазон зміни $K_{\text {зсуь }}$ становить $0,1 \ldots 20$. До розрахунку приймається значення для ділянки балки з найкрутішим кутом нахилу, де найбільш ймовірні зсувні процеси.

Коефіцієнт перетину для найбільш зсувонебезпечного профілю $K_{\text {nep }}$ визначається як відношення ширини балки по верхньому профілю l_{6} до її ширини по нижньому профілю $l_{н}$ (рис 3, б):

$$
\begin{equation*}
K_{\text {nep }}=\left(l_{t} / l_{d}\right) \cdot\left(h_{s} / l_{t}\right) . \tag{9}
\end{equation*}
$$

Для переважної більшості типових зсувонебезпечних балок $K_{\text {nep }}=0,1 \ldots 0,5$.

Таким чином, інтегральний коефіцієнт рельєфу яружно-балочної мережі $K_{p s}$ є добутком усереднених значень коефіцієнту перепаду абсолютних висот $K_{\text {вис }}$ коефіцієнту найбільш зсувонебезпечного укосу $K_{\text {зсу }}$, коефіцієнту перетину найбільш зсувонебезпечного профілю $K_{\text {nep }}$ і може змінюватись у діапазоні від 3 до майже 70.

Представлені залежності у вигляді формул (1-9) можна об'єднати у загальну геоекологічну модель зсувонебезпечності у регіональному та локальному контексті, яка дозволяє виконувати прогнозну оцінку виникнення зсувів та певній території (табл. 2).

Ілюстрація геоекологічної моделі зсувонебезпеки регіону та локальної яружно-балочної мережі з відповідними прогнозними оцінками зсувонебезпеки представлено на рис. 4 та 5. Як бачимо на карті, найбільш уразливими територіями у плані розвитку зсувних процесів по регіонах є Закарпатська, Чернівецька, Івано-Франківська, Львівська, Хмельницька, Вінницька та АР Крим.

На локальному рівні умови виникнення одиничного зсуву в яружно-балочній мережі при певній кількості опадів оцінюється залежно від площі балки та геоморфологічних показників місцевості (рис. 5).

Таблиця 2
Геоекологічна модель зсувонебезпеки регіону та яружно-балочної мережі

Так, для оцінки зсувонебезпечності балки Діївська маємо наступні вихідні дані: $L_{\text {заг }}=1080$ м; $S=0,092$ км $^{2} ; \cdot \Delta h=22$ м $; h_{\mathrm{s}}=17 \mathrm{~m} ; l_{\mathrm{s}}=4 \mathrm{~m} ; l_{\mathrm{H}} 12 \mathrm{~m}$; $l_{\mathrm{B}}=42 \mathrm{~m}$.

Розрахуємо інтегральний коефіцієнт рельєфу яружно-балочної мережі K_{ps} та кількість опадів, які спричинять зсув W_{s} :

$$
\begin{gathered}
K_{\text {рs }}=K_{\text {вис }} \cdot K_{\text {sсуу }} \cdot K_{\text {пер }}=\left(1000 \cdot \Delta h / L_{\text {заг }}\right) \cdot\left(h_{\mathrm{s}} / l_{\mathrm{s}}\right) \cdot\left(l_{\mathrm{A}} / l_{\mathrm{B}}\right) \cdot\left(h_{\mathrm{s}} / l_{\mathrm{H}}\right)= \\
=(1000 \cdot 22 / 1080) \cdot(17 / 4)(12 / 42 \cdot 17 / 12)= \\
20,37 \cdot 4,25 \cdot 0,40=35,04 .
\end{gathered}
$$

$W_{\mathrm{so}}=100 / K_{\mathrm{ps}} S=100 / 35,04 \cdot 0,092=100 / 3,224=31 \mathrm{mм}$.
Тобто, для виникнення зсуву на найбільш зсувонебезпечній ділянці, геометричні параметри якої закладено у коефіцієнт K_{ps}, достатньо 31 мм опадів за короткостроковий період.

Висновки. Запропонована геоекологічна модель оцінювання зсувонебезпеки як у регіонах, так і в умовах локальної яружно-балочної мережі. При цьому для прогнозу зсувонебезпеки у регіонах запропонована відповідна карта по областям України, яка визначає очікувану кількість зсувів, що приходиться на 1000 км2 території $з$ певним регіональним (обласним) коефіцієнтом рельєфу місцевості.

Для прогнозу кількості опадів, що спричинять хоча б один зсув грунту на території локальної яруж-но-балочної мережі, запропоновано використовувати коефіцієнт рельєфу для певної обраної ділянки балки, що обчислюється як добуток коефіцієнту перепаду її абсолютних висот, коефіцієнту найбільш зсувонебезпечного укосу та коефіцієнту перетину найбільш зсувонебезпечного профілю. Як приклад,

Рис. 4. Результати прогнозу зсувонебезпечності по регіонах Украӥни у вигляді відповідної карти

Рис. 5. Прогнозна оиінка кількості опадів, що спричинить зсув в яружно-балочній мережі

дано прогнозну оцінку кількості опадів, що спричинить зсув у балці Діївська м. Дніпро.

Перспективи використання результатів дослідження. Отримані результати будуть інтегровані у повноцінну геомеханічну-екологокліматичну

модель зсувонебезпеки для прогнозу екзогенних геологічних процесів, що супроводжуються зсувами грунту як у регіональному, так і у локальному контексті, включаючи техногенні зсувонебезпечні ділянки.

Література

1. Національна доповідь про стан техногенної та природної безпеки в Україні у 2014 році / Державна служба України з надзвичайних ситуацій; відп. вип. О.М. Євдін, В.В. Коваленко, В.С. Кропивницький. Київ: [б. в.], 2015. 365 с.
2. Національна доповідь про стан навколишнього природного середовища в Україні у 2015 році / Міністерство екології та природних ресурсів України; за ред. О.І. Бондаря та ін. Київ: Грінь Д.С., 2016. 350 с.
3. Рекомендации по количественной оценке устойчивости оползневых склонов. ПНИИИС. М.: Стройиздат, 1984. 80 с.
4. Емельянова Е.П. Основные закономерности оползневых процессов. М.: Недра, 1972. 310 с.
5. Богаченко Л.Д., Осадча Л.І., Сібуль Т.В. Моніторинг земель та стану геологічного середовища по балці Діївська в м. Дніпропетровську. Вісник Дніпропетровського університету. Серія «Геологія. Географія», 2014. Вип. № 15, ст. 2-7.
6. Kovrov O.S., Kolesnik V.Ye., Buchavyi Yu.V. Evaluation of the influence of climatic and geomorphological factors on landslides development. Environmental safety and natural resources. Kyiv: Institute of Telecommunications and Global Information Space of NAS of Ukraine, Kyiv National University of Construction and Architecture. № 1-2 (25), 2018. P. 121-132.
